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Cliodynamics: the Journal of Theoretical and Mathematical History 

Evolutionary Decomposition and the 
Mechanisms of Cultural Change 
Bret A. Beheim  
University of New Mexico 
Ryan Baldini 
University of California, Davis 
 

Beginning with the Price equation, recent work has developed the 
method of evolutionary decomposition, an exact partitioning of mean 
phenotypic change into underlying demographic processes. We present a 
method of evolutionary decomposition for human cultural change, and a 
demonstration of this method on three centuries of half-decadal census 
records collected from a simulated island population. By decomposing 
phenotypic trajectories, we can develop and evaluate suitable hypotheses 
of the driving mechanisms of cultural evolution. 

 

Introduction 
For the last half-century, many anthropologists and evolutionary biologists 
have independently realized that there is the fundamental connection between 
evolutionary theory and cultural change (Campbell, 1965; Cavalli-Sforza and 
Feldman, 1981; Boyd and Richerson, 1985; Durham, 1992; Lumsden and 
Wilson, 2005; Dawkins, 2006). Recent decades have witnessed a proliferation 
of theory regarding the evolution of cultural capacities and traits in humans. 
Most theorists suppose that culture can be fruitfully studied by imagining it as 
a set of ‘cultural traits,’ representing socially-learned beliefs and behaviors 
held by individuals. Cultural evolution, analogous to genetic evolution, occurs 
when the distribution of these traits changes over time. And as in genetic 
evolution, we can use mathematical modeling to study the evolutionary 
mechanisms driving cultural systems. Following this approach, theorists study 
how natural selection might favor various capacities for social learning, and 
how these adaptations in turn affect the evolution of behavior and material 
technology in a population.   
 The hypotheses produced by this large theoretical literature have received 
relatively modest empirical testing, and most of that in controlled, 
experimental contexts. Many studies have compared the behavior of subjects 
in multi-armed bandit or cooperation games to models of various social 
learning strategies (McElreath et al., 2005; Efferson et al., 2007, 2008; 
McElreath et al., 2008; Mesoudi and O’Brien, 2008; Eriksson and Coultas, 
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2009; Rendell et al., 2011). Other task experiments have progressively 
removed and replaced participants to create multi-generational ‘micro-
societies’ that mimic the development of cultural or technological traditions 
(Baum et al., 2004; Caldwell and Millen, 2008). These experiments reveal how 
various game conditions affect how players learn from others, and how they 
transmit information through time and space. 
 As is always the case with experimental studies, it is difficult to evaluate the 
external validity of their results. With a few exceptions (Paciotti and Hadley, 
2003; Efferson et al. 2007; Chudek et al. 2011), most such experiments use 
university students, a highly unusual human subgroup (Henrich et al., 2010). 
Naturalistic studies of real-world cultural phenomena provide a remedy, but 
quantitative studies of this kind are rare. Most have successfully tested ‘static’ 
hypotheses, investigating how ecological and ethnic contexts predict the 
distribution of cultural beliefs and behaviors at a single point in time (Paciotti 
and Hadley, 2003; McElreath, 2004; Henrich and Henrich, 2010; Henrich and 
Broesch, 2011). Absent high-resolution longitudinal data, researchers in this 
theoretical vein can rarely observe cultural change in real-time (Gravlee et al., 
2009). Surely this is due, in part, to the time costs of acquiring such data; 
evolutionary processes, even cultural ones, are usually long-term and large-
scale. Panel studies and historical records provide the most promising avenue 
for analysis of modern cultural evolution, and in coming years large-scale data 
collection and digitization projects will allow access to massive datasets of 
unprecedented resolution (e.g. Michel et al., 2011). 
 One major problem facing researchers of cultural evolution is the lack of a 
principled, quantitative method that can make sense of long-term trends in 
high-resolution datasets. Consequently, we do not have a firm understanding 
of how the simplest demographic and evolutionary processes (e.g. differential 
fertility, survival, individual learning) shape the relative abundance of 
particular ideas, behaviors or use of technologies. The best example we know 
that analyzes long-term cultural change in an implicitly evolutionary 
framework is the Hout et al. (2001) study of the fertility advantages enjoyed by 
conservative Protestants in the US over the course of the twentieth century. 
Such demographic work reminds us that the history of a cultural trait is shaped 
not only by the spread of information from person to person, but also by 
differential migration, birth and death rates. 
 We argue here that an evolutionary-demographic approach, similar to Hout 
et al., is the right one for general analyses of cultural evolution. Following the 
recent work of evolutionary demographers (Coulson and Tuljapurkar, 2008; 
Ozgul et al., 2009), we present an equation that decomposes the evolution of 
any mean character into the contributions of various demographic processes—
namely, reproductive success, parent-offspring transmission, death, 
immigration, individual change, and emigration. We assert that the aggregate 
of these processes completely describes all evolutionary change; hence, our 
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Beheim & Baldini: Cultural Change. Cliodynamics (2012) Vol 3, Iss 2 

method provides an exact description of evolution in a cultural system. With 
sufficient data, the method may reveal which processes have contributed most 
to the evolution of any character, which are relatively unimportant, and which 
‘directions’ these processes tend to push. 
 Our argument proceeds as follows: first, we show mathematically that any 
change in the mean phenotype of a population of organisms can be 
decomposed exactly into terms corresponding to standard demographic 
processes and argue that these pieces have meaningful evolutionary 
interpretations. We then decompose the trajectory of a cultural trait from 
simulated field data into the terms of our equation, which tells us the relative 
importance of reproductive success, inheritance, death, migration, and 
individual change to the long-term evolution of a hypothetical cultural trait. 
Decomposition patterns can also help us model mechanisms underlying a 
cultural trend, which we demonstrate by fitting various demographic and 
learning models to the field data to draw tentative conclusions about the major 
mechanisms underlying the observed cultural evolution. 

The RTDICE Decomposition 
Between any two census times t and t+1, the growth of a population of 
organisms can be calculated using the famous demographer’s equation, 
 
(1)   Δ𝑁 = 𝐵 − 𝐷 + 𝐼 − 𝐸 
 
which decomposes the observed change in population size into four 
measurable flux quantities, representing the number of births, deaths, 
immigrants, and emigrants, respectively. Note that although each term clearly 
represents a distinct demographic process, we cannot consider them strictly in 
isolation; had the births been greater, the deaths would undoubtedly be 
different, and so forth. Moreover, in many realistic situations we can only 
register deaths among those who had been alive at time t, leaving some 
intercensus events completely inaccessible. Nevertheless, this decomposition 
equation gives a clear sense of both how much the population is changing and, 
to some extent, why. Population growth due to births is different than growth 
through immigration by the same amount, and distinguishing between them is 
vital. Our analysis begins by asking whether a similar decomposition can be 
done for the evolutionary trajectory of a phenotypic trait measured on the 
population. 
 In observing evolution, we require that within each census, each individual 
i possesses some observable phenotypic value, 𝜙𝑖. This may represent their 
ethnicity, age, height, athletic ability, income, religion, occupation, number of 
livestock owned, political opinions, consumer preferences, or any other 
quantifiable trait whose population properties we care to track. Since we leave 
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the phenotype unspecified, this analysis applies to any species of organism, 
though we will focus here on tracking human phenotypic trajectories. Given 
this goal, we seek a decomposition equation for the intercensus change in the 
mean phenotype of the population, 𝜙�, analogous to equation (1). Below we 
present the derivation for one such equation, the RTDICE decomposition.1 
 For the purpose of exposition, imagine we sum the phenotypic value of 
every individual in a population at a particular time, such that 𝜙 = Σ 𝜙𝑖. We 
take it as self-evident that this aggregate value can change in only five ways: 
births and immigrants add their phenotypes, emigrants and deaths subtract 
theirs, and individuals who remain in the population may change their 
phenotype between the two periods.2 Thus the aggregate phenotype at the next 
census, 𝜙′, is given by 
 

𝜙′ = 𝜙 + 𝜙𝐵 − 𝜙𝐷 + 𝜙𝐼 + 𝜌 − 𝜙𝐸 
 
where 𝜙𝐵 is the sum of phenotypes of intercensus births (as measured at t+1), 
𝜙𝐷 of intercensus deaths (using their phenotypes at time t), and likewise for 
immigrants and emigrants. For those who survived from t to t+1, 𝜌 is the sum 
of the differences between their phenotypes at the two times. Using equation 
(1), we can express the population growth ratio (or finite rate of increase) as  
 

𝐺 = 𝑁′/𝑁 = 1 + 𝑏 − 𝑑 + 𝑖 − 𝑒 
 
where 𝑏 =B/N is the births between t and t+1 per member of the population in 
time t, and so forth for d, i, and e. Thus, we can write the change in the mean 
phenotype of the population, Δ𝜙�, as 
 
  Δ𝜙� =  𝜙�′ − 𝜙� = 1

𝐺
(𝜙� + 𝑏𝜙�𝐵 − 𝑑𝜙�𝐷 + 𝑖𝜙�𝐼 + 𝑐𝜌̅ − 𝑒𝜙�𝐸 − 𝜙�(1 + 𝑏 − 𝑑 + 𝑖 − 𝑒)) 

 
Let c = 1 – d – e represent proportion of the population from time t remaining 
at time t+1. Note that the term 𝜙�𝐵 = 𝜙𝐵/𝐵 represents the mean phenotype 
among births, 𝜙�𝐷 among deaths, and so on. Rearranging and simplifying gives  

1RTDICE stands for ‘reproduction, transmission, death, immigration, change, 
emigration,’ six categories that capture all evolution on the phenotypic distribution. 
Here ‘change’ means intercensus phenotypic change within individuals. 
2To be precise, in our analysis all individuals who join the population between time 
period t and t+1 are classified as ‘births’ if both their parents were in the population in 
time t, and otherwise are ‘immigrants.’ All individuals who were present in the 
population at time t and left it before t+1 are either deaths or emigrants depending on 
how they left. With only periodic census data, individuals who both joined and left the 
population intercensus are invisible to our analysis. 
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(2)     GΔ𝜙� =  𝑏(𝜙�𝐵 − 𝜙�) − 𝑑(𝜙�𝐷 − 𝜙�) + 𝑖(𝜙�𝐼 − 𝜙�) + 𝑐𝜌̅ − 𝑒(𝜙�𝐸 − 𝜙�) 
 
Equation (2) decomposes mean phenotypic change as the demographer's 
equation does for population change. The first term on the right, 𝑏(𝜙�𝐵 − 𝜙�), 
can be thought of as the effect of births on mean phenotype, the next term, 
deaths, then immigration, individual change, and emigration, respectively. 
Like the left side of the equation, each term on the right is a product of a rate 
per capita and a difference. When applied to census data, equation (2) allows 
us to see how births, deaths, migration, and individual change separately3 
affect the trajectory of mean phenotype.  
 Provided parent-offspring relationships are known, we can further 
decompose the birth term in equation (2) to distinguish the effect of 
differential reproductive success of the parents from the deviation of the child 
phenotype (transmission bias). To be specific, the term 𝜙�𝐵 can be calculated 
either by dividing the aggregate of offspring phenotypes by the number of 
offspring, or expressed using parent phenotypes and a transmission bias term. 
If 𝛿𝑘 represents the difference between the phenotype of each child k and the 
average phenotype of its parents, then the mean phenotype of births is 
 
           𝜙�𝐵 = 1

𝑏𝑁
∑ 𝑓𝑖

2
𝜙𝑖𝑁 + 1

𝐵
∑ 𝛿𝑘𝐵 = 𝜙�𝑅 + 𝛿̅ 

 
where 𝑓𝑖 is the number of offspring of individual i.4 The term 𝜙�𝑅 weights 
parent phenotypes by their reproductive output, while 𝛿̅ captures the 
difference between offspring and their midparents, on the average. This 
distinction gives us the full RTDICE evolutionary decomposition, 
 
(3)   GΔ𝜙� =  𝑏(𝜙�𝑅 − 𝜙�) + 𝑏𝛿̅ − 𝑑(𝜙�𝐷 − 𝜙�) + 𝑖(𝜙�𝐼 − 𝜙�) + 𝑐𝜌̅ − 𝑒(𝜙�𝐸 − 𝜙�) 
 
As before, the six right-side terms of equation (3) decompose the change in 
mean phenotype into the contributions of differential reproductive success, 
transmission bias, death, immigration, individual change, and emigration, 
respectively.  
 It is worth recognizing that most of the terms in equation (3) can be 
expressed as covariances (e.g. 𝑑(𝜙�𝐷 − 𝜙�) = cov(𝑑,𝜙)). This fact immediately 

3As in the demographer's equation, some intercensus events are often unknown, so 
these terms are not truly ‘independent’ in any real population. We clarify this point in 
the Discussion. 
4The division by two is necessary for offspring with two parents. 
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reveals the conceptual connection between our demographic decomposition of 
evolution and the Price equation (Price, 1970).5 
 Equation (3) is true for any measurable character for any population of a 
sexually reproducing species (and is easily modified for asexual or unisex 
populations), and provides insight into the nature of the evolutionary forces at 
work. A large magnitude reproductive success term, for example, may indicate 
the operation of fecundity or sexual selection. The mortality term could be 
large or small due to viability selection on the phenotype's distribution. In a 
genetic context, transmission bias may indicate mutation or meiotic drive, 
while individual change gives us knowledge of the role of ontogeny. For 
culturally-transmitted phenotypes, both the transmission bias and individual 
change terms may indicate the presence of learning biases. Emigration and 
immigration have less connection to Darwinian forces, but may indicate the 
importance of dispersal or source-sink effects. In short, provided we have 
individual-level data, we can use evolutionary decomposition to profile 
important trends within data straight away (Tables 1 and 2). 

An Island Simulation: The Rise of Snoobism 
One application of this decomposition analysis is assessing the practical 
importance of different evolutionary forces. In human cultural evolution, 
researchers often discuss how beliefs and behaviors can successfully diffuse in 
multiple ways: vertically, through stable inheritance from parents to offspring, 
or horizontally/obliquely within a social network (Richerson and Boyd, 2005). 
As such, when viewing the prevalence of a particular trait over time, we wish to 
know exactly how much of its trajectory can be attributed to the relative 
reproductive success of its practitioners, how much to relative horizontal or 
oblique adoption, and how much to relative migration (e.g. Stark, 1996; Hout 
et al., 2001). Because contrasting evolutionary forces enter equation (3) 
through different terms, we can directly and precisely compare their relative 
consequences if we have the right data.  
 To demonstrate the utility of evolutionary decomposition in profiling 
important trends in cultural change, we analyze census data generated by an 
agent-based simulator in the R language, SnoobSim. Simulations can easily 
descend into unrealistic omniscience in a virtual world of contrived 
 

5Price's famous theorem shows that, in the notation used above, 𝐺Δ𝜙� = cov(𝑤,𝜙) + 𝐺𝛿̅, 
where w gives the total number of ‘descendants’ produced by an individual. This is the 
first and most general evolutionary decomposition equation, and is the starting place 
for what Sean Rice calls the “algebra of evolution” (Rice 2004). If we ignore migration 
and treat surviving individuals as their own descendants, we recover Price's theorem 
from our equation (3). 
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Table 1. A hypothetical dataset with individual-level census data for two time 
periods, measuring a binary phenotype 𝜙𝑖 (note that phenotype can be discrete 
or continuous in this analysis). Jeff, Mike, and Ian are born intercensus. 
Provided we can identify individuals across multiple time periods and also 
establish parentage, we can apply equation 3 to calculate the decomposition 
terms for the change in mean phenotype in the population (Table 2). 
 

ID Census 1 𝜙𝑖 Census 2 𝜙𝑖 Parents 
Edward 1 emigrated 

 Lyn 0 died 
 Pat 1 0 
 Susan 1 0 
 Bob 0 0 
 Alex 

 
1 Edward, Lyn 

Jeff 
 

0 Edward, Susan 
Mike 

 
0 Bob, Pat 

Andrew 
 

1 immigrant 
Ian 

 
1 Edward, Susan 

Mean Phenotype 0.6 0.375   
 
Table 2. Feeding the data from table 1 into equation 3, we decompose the 
evolutionary change of –0.225 into the six terms on the right in the above 
table. Emigration and immigration effectively cancel each other out, and 
though individuals with a phenotype value of 1 had more children (positive 
reproductive success term) and died less (positive mortality term), this is more 
than offset by the fact their children tend to be phenotype 0’s (negative 
transmission bias). That, coupled with a unanimous change to phenotype 0 
among the three survivors from time t, causes the population mean to decrease 
by 22.5 percentage points. Because the decomposed terms must sum to the 
observed change under all circumstances, we can ensure the calculations are 
correct. 

Term from equation (3) Effect Calculation 
Reproductive Success 0.12 𝑏(𝜙�𝑅 − 𝜙�) 
Transmission Bias –0.2 𝑏𝛿̅ 
Death 0.12 −𝑑(𝜙�𝐷 − 𝜙�) 
Immigration 0.08 𝑖(𝜙�𝐼 − 𝜙�) 
Individual Change –0.4 𝑐𝜌̅ 
Emigration –0.08 −𝑒(𝜙�𝐸 − 𝜙�) 
Weighted Mean Change 1.6 × –0.225 GΔ𝜙� 

 
 223 



Beheim & Baldini: Cultural Change. Cliodynamics (2012) Vol 3, Iss 2 

assumptions. To avoid this problem, we proceed with two rules: first, 
everything in the analyzed data must be realistic for researchers to collect in 
the field, and second, the conclusions drawn must rest purely on the recorded 
dataset itself, rather than the algorithms that produced the data. As in real life, 
the goal is to establish exactly how far we can get without knowing the ‘rules’ of 
the system; it is a feature of our analysis that we can gain much new knowledge 
about the evolutionary processes behind observed dynamics without knowing 
their true nature.  
 In our simulation, a population of around 1,000 humans arrives in a 
resource-rich environment akin to Hawaii or New Zealand, and begins growing 
according to realistic daily mortality and reproduction schedules.6 Every five 
years, a full census of the population is collected, recording names, parentage, 
age, and several phenotypic measures. After 270 years, the population now 
numbers about 8,000 individuals and 54 such record tables have been 
collected, allowing us an extraordinarily high-resolution picture of the 
population's evolution. 
 Among the settlers, a minority group adheres to a culturally-transmitted 
worldview we call Snoobism. Among other aspects of the belief system, Snoob 
norms celebrate marrying other Snoobs, having large families of Snoob 
children, and living a safe, healthy and frugal Snoob lifestyle. Purely for 
simplicity, we treat this as a discrete, binary trait individuals may acquire or 
lose in the course of their lifetimes. Encompassing around a fifth of the original 
settlers, Snoobism spreads to nearly every member of the population by the 
final census, twelve generations later.  
 Following Ozgul et al. (2009), we contend that evolutionary decomposition 
can provide a uniquely straightforward understanding of this trend. If we plug 
the records of each of the 54 censuses into the RTDICE equation, we produce 
decomposition terms for each of the 53 values of Δ𝜙�, as in Table 2. This 
information is collected and organized in Figure 1. 
 Displaying each of the RTDICE magnitudes and directions graphically over 
time (Figure 1a) and in summary (Figure 1b) tells us immediately which of the 
decomposition terms played the largest role in driving the observed cultural 
trend. For nearly three centuries, reproductive success and mortality have 
consistently positive demographic effects on Snoobism, while parent-offspring 
transmission bias is small and apparently nondirectional. 
 

6Individuals within the population reproduce, age and die at age-specific rates 
comparable to real human populations. For the technical details of the simulator 
processes, see the ESM. The census dataset analyzed here, and R code for SnoobSim are 
available on the authors’ websites. 
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Figure 1. (a) The population frequency of a binary cultural trait, Snoobism, 
observed over time, superimposed with the nonzero decomposition terms from 
the RTDICE equation. Bars stacked above the Snoob frequency line represent 
positive magnitudes, and stacked below it, negative. Since each bar represents 
one of the terms of equation (3) (divided by G), their sum steers the direction 
of the frequency line. For clarity, the bars are exaggerated to the scale in (b), 
which shows means, 5th, 25th, 75th, and 95th percentiles of the observed annual 
decomposition magnitudes for each term. 
 
 Note that from the RTDICE decomposition itself we cannot tell if this 
reproductive success effect results from differences in birth spacing, length of 
reproductive career, success in acquiring mates, or some combination of these. 
Whatever the case, though, it is clear that on average Snoobs have more 
children than non-Snoobs, and that this is the most important trend in the 
evolution of Snoobism in the population over time.  
 The strong, consistently positive effects from reproductive success and 
mortality are not obvious from the frequency line itself, which for a full century 
shows little change in the prevalence of Snoobism in the population. The 
decomposition terms indicate the reason: despite the fact the average Snoob 
has more children and is less likely to die than a non-Snoob, many more 
individuals abandon Snoobism than adopt it, maintaining Snoob frequency at 
around 20–25 percent. Only once this effect begins to vanish, 100 years after 
the settlement's founding, does Snoobism increase in frequency, and the last 15 
census records all indicate a positive conversion balance that rivals the 
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reproductive success and mortality effects and facilitates Snoobism's eventual 
dominance.  
 As with differential fertility and mortality, this reversal is consistent with 
many hypotheses. For example, it could be that an environmental or social 
change occurred sometime between the years 130 and 180, after which 
Snoobism appeared to be an inherently more attractive lifestyle. Perhaps 
Snoobs developed a new institution for promoting conversion or preventing 
apostasy, or became politically dominant over non-Snoobs. The trend is also 
consistent with a social learning hypothesis. Suppose, for example, that 
individuals tend to conform to the beliefs of the majority; then we would 
expect the conversion balance to covary with 𝜙�. In our view, evolutionary 
decomposition is most valuable because such revealed trends can motivate 
targeted statistical modeling, which in turn can make predictions about future 
change.  
 From the decomposition figures, we can also clearly see which processes do 
not have large impact on the evolutionary trajectory. If we were measuring 
traits that are mostly transmitted horizontally within cohorts, such as musical 
preferences or use of a new technology, we expect to see a large transmission 
bias between parents and children. This will also occur when measuring a life 
history characteristic like body weight or hunting skill, and as we discuss later 
this may even motivate a more sophisticated decomposition equation. The 
small bars of the transmission bias term in Figure 1 show that this is not true 
for one’s Snoob status—children, when first censused, reliably hold the traits of 
their parents, Snoob or non-Snoob. 
 It should be noted that the apparent lack of a strong transmission bias does 
not render the process of character transmission unimportant. The fact that 
offspring tend to resemble their parents on average suggests that the Snoob 
trait is somehow heritable, and this heritability allows differential fertility and 
survival to affect the population mean. Still, Figure 1 clearly shows that 
transmission bias in and of itself appears to have little direct effect on the rise 
of Snoobism, while the mechanisms behind reproductive success, mortality 
and individual change all play determining roles.  

Comparing Mechanisms of Cultural Change 
With decomposed trends now available, researchers can make informed 
forecasts about future change, compare parallel trends for other traits or in 
other populations, or design more specific goals for new rounds of data 
collection. The most useful next step, in our opinion, is generating hypotheses 
about why these decomposition terms appear as they do, and developing and 
testing models of the mechanisms underlying these patterns. 
 For demonstration, we will focus here on the individual change term, with 
similar analyses of reproductive success and mortality in the ESM (Electronic 
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Supplementary Material). Among those individuals who appear in multiple 
censuses, we wish to know what effectively predicts their Snoob status, 0 or 1, 
at time t+1 given the information available at time t. If we consider an 
individual i's Snoob status in the next census, 𝜙𝑖,𝑡+1, as a binomial random 
variable, possible mechanisms can be formalized as conditional probabilities of 
becoming a Snoob. To be precise, we will assume individuals retain their 
current Snoob status with probability (1 – L) and update with probability L, 
and using some learning rule M. Then each model takes the form Pr�𝜙𝑖,𝑡+1 =
1� = 𝐿𝑀 + (1 − 𝐿)𝜙𝑖,𝑡. As discussed above, the three-century-long swing in 
direction of the individual change term seems to point to several different, but 
not mutually-exclusive mechanisms:  

Conformist social learning. Under this mechanism, individuals tend to 
abandon Snoobism when it is unpopular, but become Snoobs when it is 
common. Beginning with Boyd and Richerson's 1985 model, the conformist 
learning bias can be expressed in the form 𝑀 = 𝜙�𝑡 + 2(𝛽 − 1)(2𝜙�𝑡 − 1)𝜙�𝑡(1 −
𝜙�𝑡). Parameter 𝛽 represents the strength of conformity; when it is 1, updating 
is frequency-dependent but unbiased, and when it is greater than 1, updating is 
biased towards conformity. More general, but more complicated, versions of 
this equation have been developed, allowing the conformity threshold to vary 
from a simple majority (Bowles, 2006) and the strength of conformity to vary 
without bound (McElreath et al., 2008).  

Individual learning/density dependence. As the population is steadily 
growing in the simulator, the observed swing in the individual change term is 
also consistent with a simple density-dependence. Under such a mechanism, 
the probability of becoming or remaining a Snoob increases with the island's 
population size, perhaps because non-confrontational Snoob norms are more 
attractive in crowded environments. Thus, for population size 𝑁𝑡, the updating 
model may be written as 𝑀 = logit−1(𝛼 + 𝛽𝑁𝑡).  

Individual learning/environmental change. It is also plausible that 
individuals adopt or maintain Snoobism purely as a consequence of 
‘environmental’ decision-making, regardless of current population size or 
Snoob prevalence. Shocks due to technological ratcheting or climatological 
shifts may make Snoobism, with its thrifty norms and informal channels of 
social support, a more appealing lifestyle. The observed swing in the individual 
change term, then, may be consequent from a changing material environment 
alone. Absent any form of economic or ecological data, we can still model this 
using simple time series models, e.g. 𝑀 = logit−1(𝛼 + 𝛽𝑡), which can account 
for unobserved environmental shifts.  
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 Of course, in real populations such processes are probably all in effect to 
varying degrees, so more complex updating models that incorporate mixtures 
of these simple mechanisms should be included as well. Using information-
theoretic model comparison techniques, we fit a variety of such models, simple 
and complex, to the individual-level phenotypic data using maximum 
likelihood, and compared them using the Akaike Information Criterion and 
Schwartz Criterion (also called BIC). Table 3 shows the four best-performing 
models, all conformist learning models. The dominance of such models is most 
consistent with a pure conformist social learning hypothesis, at least among 
the few hypotheses tested above.7 The two other major drivers of Snoobism, 
reproductive success and mortality, were analyzed in a similar fashion in the 
ESM. Motivated by patterns in the decomposition terms, hypotheses about 
driving mechanisms of cultural evolution can be drawn from the rich 
theoretical literature and, using these methods, fitted to realistic field data. 
 
Table 3. Top four models among the thirteen fitted to the simulated census 
data, as measured by AICc (see ESM for full model list). Each of the thirteen M 
models is embedded in the equation 𝑝 = 𝐿𝑀 + (1 − 𝐿)𝜙𝑖,𝑡, where p describes 
the conditional probability an individual will be a Snoob in the next census, 
assuming 𝜙𝑖,𝑡+1 ~ Binomial(1, 𝑝). The top four are all social learning models, 
each with a conformity estimate and 95 percent confidence interval of 
comparable meaning.  
 

Updating Model, M Conformity Estimate AICc Weight 
𝜙�𝑡 + 2(𝛽 − 1)(2𝜙�𝑡 − 1)𝜙�𝑡(1 − 𝜙�𝑡) 1.37 (1.32, 1.41) 0.40 

𝜙�𝑡
𝛽/(𝜙�𝑡

𝛽 + (1 − 𝜙�𝑡)𝛽 1.37 (1.32, 1.43) 0.40 
𝜙�𝑡 + 2(𝛽 − 1)(2𝜙�𝑡 − 2𝑘)𝜙�𝑡(1 − 𝜙�𝑡) 1.36 (1.31, 1.41) 0.17 

logit−1(𝛼 + 𝛽𝜙�𝑡) 6.34 (6.12, 6.66) 0.01 
 

Discussion 
It is important to emphasize what the preceding evolutionary decomposition 
analysis gives us compared to standard demographic metrics. Birth and death 
rates could be more precisely compared using the total fertility rate, life 
expectancy at birth, or other common demographic measures. But by 
themselves these tools lack a direct mathematical connection to change in 
mean phenotype in the population, the most common way we measure 
evolution. As a result, it is difficult to assess exactly how much mortality affects 

7Unsurprisingly, this was the learning model used by the agents in SnoobSim. 
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the population distribution of phenotype, versus reproductive success, 
immigration, and so forth.  
 These answers are readily available from decomposition of mean 
phenotypic change, regardless of the particularities of the system. Phenotypes 
may be discrete values like Snoob status, or continuous, like body weight. 
Because the decomposition equation is derived from basic facts about the 
population and data structure, its value depends not in the realism of its 
assumptions (which we contend are nearer to axioms), but rather in the 
meanings we can find in its terms, once strictly defined. In doing so, three 
important qualifications must be stressed.  
 First, the terms in the decomposition equation segregate but do not 
correspond exactly to evolutionary processes like sexual selection or biased 
social learning. Snoobs may enjoy higher reproductive success because of 
something inherent in practicing Snoobism, because the trait co-occurs with 
some other trait like income or age, or simply due to chance. The 
decomposition terms, most of which are covariances between phenotype and 
demographic outcomes, are really nothing more that dimensionalized 
correlations. Following Rice (2004) and Henrich et al. (2008), we feel that 
terms like ‘selection’ or ‘fitness’ should only be invoked when a causal pathway 
between phenotype and outcome can be supported, and even then any 
empirical decomposition term will be a combination of both causal and 
noncausal associations.  
 Second, the RTDICE decomposition is only one possible partitioning of the 
observed phenotypic trajectory, and potentially not a very useful one. For 
example, the differential mortality between Snoobs and non-Snoobs is 
partially a consequence of the fact Snoobs tend to be younger, which is a 
consequence of their differential reproductive success. We can use logistic 
models of mortality to establish that Snoob status predicts mortality outcomes 
even among those of the same age (see ESM), but the RTDICE mortality term 
cannot isolate this effect from the covariance between Snoobism and age. If we 
expect structuring variables like age, gender, ethnic group, or location in a 
metapopulation will play an important role in the evolution of a particular 
phenotypic character, we should build this directly into the decomposition 
equation as appropriate for the dataset and the situation (Coulson and 
Tuljapurkar, 2008).  
 We must also modify the equation if the categories we place people within 
are inappropriate, e.g. the intercensus period spans multiple generations, 
parentage cannot be identified, or we wish to distinguish immigrants from 
different sources. Note that we need no special consideration of whether the 
parent of record is a genetic parent, and if appropriate we may specify other 
inheritance relationships like ‘teacher’ or ‘older sibling’; the evolutionary 
consequences of the observed relationship are an empirical matter. 
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 The third qualification is that, without records of each demographic event 
as it happened, the terms in a decomposition equation should not be viewed as 
strictly independent. The effects of intercensus events are inferred from 
comparing the two census records, but some information is necessarily lost, 
such as individual change shortly before death or after birth.  
 In fact, if the population experiences demographic events in discrete 
seasons, the terms can lose their distinctiveness altogether. Imagine, for 
example, a population of individuals experience heavy mortality in each 
winter, selecting out individuals with smaller phenotypes (e.g. weight, beak 
length). Then, in the summer, the survivors give birth. Applying RTDICE to 
annual census records would show a strong covariance between reproductive 
success and phenotype even if phenotype plays no important role in mating or 
reproducing, simply because of the preceding mortality event.  
 We suspect that for large populations in which such demographic events do 
not follow a strict order, the distortions are minimal. We can never properly 
rid ourselves of the problem of order, however, since every death removes the 
possibility of another birth, emigration event, etc. For populations which do go 
through a distinct schedule of demographic events, one possible solution is to 
construct ordered-event decomposition equations.  
 As in Coulson and Tuljapurkar (2008), the RTDICE equation only holds 
exactly for full census data without error. We realize that probably no dataset 
of the size and quality comparable to that simulated here exists in reality; real 
datasets nearly always contain just a sample of the full population and some 
amount of measurement error. Under circumstances of incomplete data, the 
terms of the RTDICE equation cannot simply be computed but must instead be 
estimated by statistical analysis. We anticipate that future research will 
elucidate the best statistical methods for estimating these terms. 
 Despite these limitations, we foresee a wide variety of applications for the 
decomposition approach in both evolutionary theory and studying human 
history. The decomposition method provides unique advantages in profiling 
trends, motivating and testing hypotheses, and assisting prediction. By 
applying basic demographic bookkeeping to high-resolution records of cultural 
change over time, we are also able to demonstrate conclusively the Darwinian 
nature of cultural transmission. 
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