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The rapid adoption of lightweight activity tracking sensors demonstrates that precise measures of physical activity hold great
value for a wide variety of applications. The corresponding growth of physical activity data creates an urgent need for methods to
integrate such data. In this paper, we demonstrate methods for 1) synchronizing accelerometer and Global Positioning System
(GPS) data with optimal corrections for device-related time drift, and 2) producing principled estimates of step counts from GPS
data. These methods improve the accuracy of time-resolved physical activity measures and permit pedestrian travel from either
sensor to be expressed in terms of a common currency, step counts. We show that sensor-based estimates of step length
correspond well with expectations based on independent measures, and functional relationships between step length, height, and
movement speed expected from biomechanical models. Using 123 person-days of data in which Hadza hunter-gatherers wore
both GPS devices and accelerometers, we find that GPS-based estimates of daily step counts have a good correspondence with
accelerometer-recorded values. A multivariate linear model predicting daily step counts from distance walked, mean movement
speed, and height has an R? value of 0.96 and a mean absolute percent error of 16.8% (mean absolute error = 1,354 steps; mean
steps per day = 15,800; n = 123). To best represent step count estimation error, we fit a Bayesian model and plot the distributions
of step count estimates it generates. Our methods more accurately situate accelerometer-based measures of physical activity in
space and time, and provide new avenues for comparative research in biomechanics and human movement ecology.
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Behavioral research is increasingly carried out with the aid of  ease using either accelerometers or Global Positioning System
lightweight activity tracking sensors. The quality of such research ~ (GPS) devices (Chen, Janz, Zhu, & Brychta, 2012; Terrier &
depends upon the validation of individual sensors, and consideration Schutz, 2005). Ideally, data from these sources could be integrated
of how data streams from different sensors can best be integrated.  to enable greater comparative research and build on the specific

Fine scale measures of pedestrian travel can be gathered with relative ~ 2dvantages of each type of sensor (Duncan, Badland, & Mummery,
2009). The methods described here were developed with such a goal
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pedestrian travel of 717,527 people in 111 nations are recorded. To
build a comparison between this large dataset and the Hadza, we
were motivated to build a method for estimating step counts from our
database of GPS tracks. To develop this method, we analyze here
data collected during a seven-day period in 2015, during which
Hadza research participants simultaneously wore both GPS devices
and accelerometers. These data provide us with a valuable opportu-
nity to develop and evaluate a model of step count estimation using
GPS tracks. Our method for translating GPS data into estimates of
step counts has wide applicability beyond our research, and we are
aware of no prior study that has developed such a method.

While developing our step count estimation method, a major
problem we encountered is the phenomenon of accelerometer time
drift. Time drift reduces the accuracy of accelerometer time stamps
and creates synchronization errors if accelerometer data are merged
with GPS data using the devices’ raw time stamps. To enable more
accurate synchronization of data, we have developed software to
estimate and correct for accelerometer timestamp error.

Methods for accurately synchronizing GPS with accelerome-
ter data are generally useful for placing physical activity patterns
into spatial context, as is done in research in public health,
transportation planning, geography, and anthropology (e.g. Chen
et al.,, 2012; Gordon-Larsen, Nelson, Page, & Popkin, 2006;
Handy, Boarnet, Ewing, & Killingsworth, 2002). Some methods
for combing GPS and accelerometer data sources have been
reported (Almanza, Jerrett, Dunton, Seto, & Pentz, 2012; Mackett,
Brown, Gong, Kitazawa, & Paskins, 2007; Oliver, Badland,
Mavoa, Duncan, & Duncan, 2010; Rodriguez, Brown, & Troped,
2005; Terrier, Ladetto, Merminod, & Schutz, 2000; Troped et al.,
2008). The majority of systems we reviewed ignored time drift
error, and a minority corrected it using visually aided hand re-
alignments of plotted data. Synchronizing sensor data by shifting,
stretching, or compressing plots of data by hand is not ideal; with
large datasets this could require a great deal of analyst time, and
such workflows make replicating analyses challenging. For these
reasons, we have developed an automated software approach, and
distribute it freely to aid future research.

To learn the best way to estimate step counts from GPS data, it
is worth considering biomechanical influences upon step length
and step counts. The distance that a person walks during the course
of a day should be positively and strongly correlated with the
number of steps a person takes. In addition, biomechanical models
predict that walking speed and subject height should also be
important, because faster walking and taller subjects take longer
steps (Alexander, 1984, Weyand, Smith, Puyau, & Butte, 2010).
Therefore, given a fixed walked distance, height and walking speed
should negatively correlate with step counts. Step count estimates
based on GPS data might improve if they included, along with total
distances walked, measures of movement speed and subject height.
The influence of these variables is clear under controlled experi-
mental conditions, but their inclusion in a model may not have a
major impact on results given the imperfect nature of GPS data.
Noise in GPS signals might overshadow any signal of the influence
of subject height and walking speed upon step lengths or step
counts. Alternatively, these biomechanical influences might be
detectable, and therefore worth including in models estimating
step counts. We therefore analyze our synchronized data to deter-
mine whether the predicted influences of subject height and
movement speed are detectable in multivariate regression models
predicting step length and step counts.

In the methods section below, we first describe how our GPS,
accelerometer, and anthropometric data were collected. We then

detail the problem of time drift, and our novel synchronization
algorithm. We also provide more details of our statistical analyses.
The data, variables, and structure of all statistical models are also
listed in Table S1 of the Supplementary Materials (available
online). In the results section, we first illustrate the patterns of
time drift that exist in the accelerometer data. We then fitand report
details of statistical models to estimate step lengths and step counts.
Finally, we plot the estimates of a Bayesian model predicting daily
step counts from measures of distance traveled, average movement
speed, and subject height. In the discussion section, we describe
limitations and extensions of our methods.

Methods

Study Location and Data Collection

The data in this paper were collected as part of anthropological
study of Hadza hunter-gatherers of northern Tanzania (Wood &
Marlowe, 2014; Pontzer et al., 2015; Raichlen et al., 2014). Rich
descriptions of the Hadza people and their hunting and gathering
lifestyle can be found in several monographs (Blurton Jones, 2016;
Marlowe, 2010). Our research protocol was approved by human
subject committees at Hunter College, the University of Arizona,
Arizona State University, and Yale University. Our research also
had approval from the Tanzanian Commission for Science and
Technology (COSTECH) and the National Institute for Medical
Research (NIMR). Participants gave informed consent prior to
participation.

The field research was carried out in July of 2015 in a Hadza
camp in a remote area of northern Tanzania. The sample collected
here was gathered within the purview of an ongoing study of space
use and physical activity, which has produced a large corpus of
GPS tracks describing individual movement (Raichlen et al.,
2014). During the period of data collection reported here, ActivPal
Professional accelerometers (Pal Technologies, LTD, Scotland)
were placed on 19 research participants, each of whom gave their
informed consent to wear such devices for a seven-day study
period. While a seven-day study period was used, it is important
to note that unlike market-integrated societies, the Hadza do not
follow a weekly cycle of work, and the term “weekend” has no
meaning in Hadza culture or have any influence on how they
schedule daily life. ActivPal accelerometers have been validated
against video measures and pedometers to accurately measure step
counts (Ryan, Grant, Tigbe, & Granat, 2006).

The accelerometers were worn continuously, while GPS
devices were placed on subjects in the early morning (-7 AM)
and removed in the early evening (~7 PM). The ActivPal devices
were encased in waterproof tape and affixed to the wearer’s left
thigh so as to permit the accurate measurement of posture and
movement. GPS devices were attached to carabiners which were
looped onto belts or fabric that were worn by the research
participants. Research participants carried out their normal hunt-
ing and gathering activities during the course of the study period.
Men and women foraged daily for meat, honey, and plant foods,
collected water, collected firewood, and engaged in a variety of
domestic activities in camp. The sensor data from the day in
which the accelerometers were applied was not analyzed, because
the transport and handling of the devices reduced the data quality.
We were unable to compile a complete dataset that included all 19
subjects wearing both GPS and accelerometers on all seven days
of the study. On four occasions, participants left camp in the
morning prior to receiving their GPS devices. On one occasion, a
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GPS device malfunctioned and did not record data. In the
resulting 128 person-days of free-living data, five were excluded
from analysis, because they record a day in which five participants
were driven to an important village meeting using the research
vehicle.

All the GPS-recorded travel in the analyzed sample is thus
pedestrian travel. The final dataset consists of 123 person days
(1511.6 hours) in which GPS and accelerometers were worn
simultaneously. In the analyzed dataset, two of the 19 participants
contributed five days of GPS and accelerometer data, six partici-
pants contributed six days of data, and 11 contributed a full seven
days of GPS and accelerometer data. When exported, the acceler-
ometer data enumerated step counts per 15-second epoch. The GPS
data were set to record locations of their wearer every five seconds.
For privacy concerns, no personally identifying information about
our research participants is shared.

The Problem of Time Drift

To understand best practices for synchronizing accelerometer and
GPS data, it is useful to review each sensor’s time keeping system.
Time drift, known to occur in accelerometers (see Barreira, Zderic,
Schuna, & Hamilton, 2015), arises because these sensors store a
single timestamp at the moment of initialization, and other internally
stored timestamps are generated as offsets from this master time-
stamp. Owing to slight imprecision in internal timekeeping, more
distal timestamps lose absolute accuracy. Two sources of error affect
accelerometer time stamps: whether the computer time used at device
initialization is correct, and additionally, the time drift that distorts
timestamps subsequent to device initialization. Our method estimates
and corrects for both sources of asynchrony. GPS data are not subject
to either source of error. This is because GPS devices continually
receive timestamps directly from the atomic clocks onboard GPS
satellites (Hofmann-Wellenhof, Lichtenegger, & Collins, 2012).
Our technique for optimally estimating and correcting for error
in accelerometer time stamps is based on a simple premise. As a
starting point, we surmise that if no time error existed in accel-
erometry data, then accelerometer-measured step counts and GPS-
measured distances traveled should be highly correlated across
time for a single pedestrian traveler. Therefore, a linear regression
model predicting distances traveled (GPS) from steps taken (accel-
erometer) should have a high goodness-of-fit, or R” value. As time
drift injects error into the accelerometer timestamps, the goodness-
of-fit of such models using uncorrected data is expected to degrade.
If this simple principle holds, then R* values of linear regression
models incorporating varying degrees of time drift correction can
be used to search for the optimal time drift correction, enabling
accelerometer data to be synched to GPS / atomic time. The

Table 1
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software implementation of our method enables fast processing
of data and replication of analyses. We share our source code freely
to encourage others to use or improve upon our method.

Data Synchronization Algorithm

The software (written in R, version 3.3.3) we developed to
optimally synchronize GPS and accelerometer data can be down-
loaded here: https://osf.io/5z8q2. The algorithm is described in
pseudocode (see Table 1).

A few notes about this workflow may add clarity. Regarding
step 3, the range of candidate drift offsets to explore is study-
dependent. In our case, according to Pal Technologies, devices
could be expected to lose about 3 seconds of absolute accuracy per
day during use, and that time drift could vary across devices. Based
on this information, we estimated that over the course of a seven-
day study, we could expect approx. 20 seconds of drift. To be
conservative, in our testing, we explored a range of drift offsets
from —100 to 100 seconds.

Regarding steps 57, here our method summarizes distances
walked within time segments whose duration matches the record-
ing epoch of the accelerometers (15 seconds). The step counts
within each epoch are never changed, but the times that define the
epoch are systematically adjusted across a range of candidate
synchronizations, offset from the raw accelerometer time stamps.
The process of summarizing the GPS data to produce a measure of
distance traveled within any 15-second epoch is shown in
Figure 1.

In our case, GPS devices recorded locations at five-second
intervals (Figure 1A) while accelerometer data provided step
counts summaries within 15-second epochs (Figure 1B), and
the GPS epochs were not subperiodic with the accelerometer
epochs. In order to create summaries of GPS-recorded movement
within accelerometer epochs, we first injected pseudo-trackpoints
into the GPS data at the starting times of each 15-second
accelerometer epoch, using linear interpolation (Figure 1C). It
is important to note that the raw GPS data were never down-
sampled; prior to being summarized, the GPS dataset included
both the original trackpoints and the interpolated points. Within
each 15-second track segment, we then summarized how many
meters of travel occurred (Figure 1D). The resulting intermediate
dataset, or candidate synchronization, then listed, for every
accelerometer epoch, a count of steps taken and a measure of
distance walked. Each of these candidate synchronizations was
then fed into a linear regression model in which step count was
estimated from distance traveled, and the R? value of each model
was saved. In Figure 2, we plot the R* values that resulted
from linear regression models upon a range of candidate

Pseudocode of Algorithm to Synchronize GPS With Accelerometer Data

1. For each person-day of data:

2. Get the uncorrected time series defining the start of each accelerometer epoch.

3. Add a range of drift offsets (e.g., from —100 to 100 seconds) to these start times, forming a set of vectors of adjusted epoch times.

4. For each vector of adjusted epoch times:

5. Inject interpolated trackpoints into the GPS data at each adjusted epoch time, forming track segments.

6. For each track segment:

7. Sum the distance traveled, forming a candidate synchronization.
8. Perform linear regression using the candidate synchronization, estimating step counts from distances traveled, and save the R* value of the fit model.
9. Select the candidate synchronization that produced the highest R value.
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Figure 2 — R values derived from candidate synchronizations of 6 person-days of data, ranging from —100 to 100 seconds of error correction.
The correction on each day with the highest R* value is shown in red. Note that the correction needed for the same device varies across the study, owing to

accelerometer time drift.

As seen in Figure 2, the R? values in these plots display clearly
defined peaks across candidate synchronizations. The unimodal
distributions and clear peaks give us confidence that our estimation

synchronizations on six person-days of data. Identifying optimal
corrections for accelerometer time error is relatively straightfor-
ward using this method.
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process is indeed finding the most accurate synchronization
possible.

We applied the algorithm illustrated in Figure 1, Figure 2, and
Table 1 to the entire dataset, thus identifying the time drift that
affected each device across the days of our study. In the results
section, we plot the time drift of each device across the study
and calculate rates of drift for each device using linear regression.
To evaluate our synchronization method, we also compare the
goodness of fit of regression models predicting step counts from
distances traveled using raw accelerometer data to those using
synchronized data.

Analysis of Synchronized GPS-Accelerometer
Dataset

Here, we explain details of our analyses to examine how well the
synchronized dataset conforms to theoretical and empirical expecta-
tions, and our method for estimating step counts from GPS data.
Because our data include repeated measures of individuals, we
adopted a multilevel modeling approach with varying effect terms
for each individual. All models include varying intercepts by individ-
ual. Where possible, we also specified varying slopes by individual,
but problems with model convergence did not permit such a structure
in all cases (see Sugplemental Materials, Table S1 [available online]
for details). The R values of models in this study are computed
following the method of Raudenbush and Bryk (2002), as imple-
mented in the R package ‘mitml’ (Grund, Robitzsch, & Luedtke,
2019), and only consider the variance accounted for by fixed effects
(i.e. variance at level 1). The p-values of model coefficients are
estimated using Satterwaite’s method as implemented in the R
package ‘ImerTest’ (Kuznetsova, Brockhoff, & Christensen, 2017).

We first examine the univariate relationship between daily
distance traveled and steps taken, across 123 person-days of data,
using a multilevel regression model (M1). Next, we examine
whether, as biomechanical models predict, height (cm) and walking
speed (meters / second) are positively associated with calculated step
length (m). To do so, we fit a multilevel model (M2) to the most
detailed data representation, that is, with the data summarized into
362,784 optimally synchronized 15-second epochs. For each epoch,
we calculated the average step length by dividing the distance walked
by the numbers of steps logged. In epochs with zero movement, step
length was scored as zero.

We check the validity of the synchronized sensor data by
estimating the linear relationship between movement speed and
step length in the sensor data (M3) and comparing the result of this
analysis to a model (M4) fit to experimental data collected under
controlled conditions, during a prior study of Hadza locomotion
(Pontzer et al.,, 2014). In that prior study, we experimentally
measured step lengths for men and women (n=199 trials, 54
subjects, 36 men, 19 women) walking on level ground at speeds
ranging from 0.84 to 2.08 meters per second. In order to make the
analyses maximally comparable, we fit M3 to epochs of movement
within this same range of walking speeds.

We next fit a multilevel regression model for the prediction of
daily step counts from GPS and anthropometric data (MS5). The
predictor variables of this model include: 1) distance traveled per
day (meters); 2) average movement speed (meters / second); and 3)
height of the GPS-wearing research participant (cm). To evaluate
the accuracy of this model, we calculate its R* value, mean average
error (MAE) and mean average percent error (MAPE).

In order to best represent model estimation uncertainty, we
then adopt a Bayesian approach, and fit a multilevel model (M6)
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using the R package ‘brms’ (Biirkner, 2017), using uniform
priors. In this model, varying slopes and intercepts were fit to
each individual. In terms of fixed effects, this model includes the
same predictor variables as M5 just described above. The
parameter estimates were calculated using 4,000 post-warmup
samples. Using this fit model, we plot posterior distributions of
model estimates, and their relationship to distance traveled,
mean speed, and height.

Results

We first examine patterns of error identified in the timestamps of
accelerometer data. For each accelerometer examined, the rate of
drift (seconds / day) was consistent across the seven-day wear
period (Figure 3). However, we found that the direction of drift
differed across devices. On day 1 of the study, all devices started
with baseline timestamps that were earlier than GPS time. This is
due to a difference between GPS time and clock time on the
computer used to initialize the devices. Thereafter, some of the
device’s clocks were slower than GPS clocks (devices 10-19), and
thus require increasingly positive drift corrections, while other
device clocks (1-9) were faster than GPS clocks.

Correspondence of GPS and Accelerometer-Based
Measures of Movement

Correcting for accelerometer time drift led to a notable increase in
the correspondence of accelerometer and GPS measures of move-
ment. The average R* value of 123 within-day linear models
estimating step counts from distances traveled was 0.58
(8D =0.28) before correcting for time drift and 0.78 (SD =0.22)
after correcting for it. Using the synchronized data, we found that
there was a tight relationship, across days, between total distance
traveled and total step counts:

Figure 4 plots the relationship between daily distance traveled
and steps taken, across 123 person-days. The multilevel model fit to
these data estimates that across the sample, 1,445 steps were taken
per kilometer, or 0.69 meters per step, which is a biologically
reasonable estimate for a short-statured human population (Pontzer
et al., 2014).

Movement Speed, Height, and Step Length
Estimates

Experimental studies and biomechanical models show that
subject height and walking speed are positively associated with
step length (Alexander, 1984; Weyand et al., 2010). Here, we
investigate whether these relationships are detectable in our syn-
chronized GPS-accelerometer dataset. The results are shown in
Table 2.

Below, using linear regression, we plot the univariate rela-
tionship between walking speed and step length estimated from an
experimental dataset collected during a prior study (Pontzer et al.,
2014) and the synchronized sensor dataset of the current study.

As seen in Figure 5, the linear relationship between walking
speed and step length is remarkably similar when estimated from
either the experimental data or the sensor data, suggesting that
analyses of synchronized sensors can accurately detect biomechani-
cal influences upon gait. While the parameter estimates are similar,
there is greater noise in the free-living, sensor-recorded data. The R*
value of the model fit to experimental data (M3) is 0.84 and that of
the sensor data (M4) is 0.11. In both models, speed is significantly
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asynchrony of times is owing to differences between GPS time and the computer time used to initialize the accelerometers. Thereafter, further shifts are
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Figure 4 — Total distance traveled (from GPS) and steps logged per
day (from accelerometers). The fit linear relationship from the multilevel
model is shown in blue. The R? value of this model is 0.95.

and positively associated with step length (Bexperimental = 0.3,
P <.001; Bsensors = 0.31, p<.001).

Estimation of Step Counts From GPS Data

We describe here details of our multivariate model that estimates
daily step counts from GPS data and height, and it’s correspon-
dence to accelerometer-recorded step counts. In this dataset,
research participants traveled 10,955 meters per day on average

Table 2 Fixed Effects From a Multilevel Regression
Model (M2) of Step Length Fit to the Synchronized GPS
and Accelerometry Data

Term Estimate Std. Error p-value
(Intercept) —-0.0353 0.0237 1537
Height (cm) 0.0003 0.0002 .0512
Walking speed (m/s) 0.5281 0.0097 <.001

Note. In this model, step length is estimated as a function of height and walking
speed of subjects. Observations: 362,784 15-second intervals, nested within 19
research participants. R> = 0.68.

(SD=17,176, n=123) at a mean speed of 0.26 meters per second
(SD=0.17, n=123).

The model estimating step counts from subject height, distance
traveled, and mean speed has a very high goodness of fit
(R*=0.96). The mean absolute difference between model predic-
tions and accelerometer-recorded step counts is 1,354, which is
8.6% of the average steps per day (15,800). The mean absolute
percent error of the model is 16.8%. The parameter estimates of this
model show that distance traveled and mean speed have strong
influences on estimated step counts, as expected from biomechani-
cal models. The parameter estimate for influence of height is in the
direction expected, but is not statistically significant. It is important
to note that the sample analyzed here includes only adult subjects
(Table 3), and therefore height variation is limited relative to what
would be found in a more complete demographic sample including
both children and adults.
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Figure 5 — The relationship between walking speed and step length estimated from A) experimental measures and B) the synchronized accelerometer-

GPS dataset. The regression equation and parameter estimates of each fit model (M3, M4) are displayed on the plot.

Table3 Research Participants in Study, Who Produced 123 Person Days of Data in
Which Both GPS Devices (Garmin E-trex) and Accelerometers (ActivPal) Were Worn

Age Height, cm Hours per day
Gender M (SD) M (SD) N Participants N Days M (SD)
Female 33 (15.6) 149.6 (6.9) 10 63 12.4 (0.3)
Male 35 (13.5) 162.7 (6.4) 9 60 12.2 (0.3)

Note. Hours per day refers to hours both devices were worn per day. M (SD)=Mean (Standard Deviation).

Table 4 Multilevel Model Estimating Step Counts
From GPS and Anthropometric Data*

Term Estimate Std. Error p-value
(Intercept) 4294218 5516.5 447
Distance walked 2004.553 119.457 <.001
Mean speed —24004.574 5010.346 <.001
height -27.412 3547 450
R*=0.96 Mean absolute Mean absolute percent

error (MAE)=1,354 error (MAPE)=16.8%

* Fixed effects from Model 5, estimating step counts from GPS measures and
height.

To visualize model uncertainty, we now plot posterior pre-
dictions of a Bayesian model that includes the same predictor
variables as those listed in Table 4. In the plots below, we represent
the stand-alone effects of subject height, distance traveled, and
average speed, when statistically controlling for the other variables,
by holding them at their mean values.

Posterior predictions of the Bayesian model illustrate the
strong effects of distance walked and mean movement speed,
and the weaker and more variable effect of subject height on
step count.

Discussion and Conclusion

In this study, we demonstrated that complex patterns of time error
arise in accelerometry data, and we have provided an automated

method for optimally estimating and correcting such error. The
simple method we have described here will hopefully enable the
assessment and correction of accelerometer time drift in future
studies. Given the observed differences in time drift error among
accelerometers (see Figures 2 and 3), it would not be advisable for
researchers to apply a single time drift correction across devices,
nor to assume that device clocks will be invariably faster or slower
than absolute time. These inter-device differences underscore the
importance of using automated methods to estimate and correct for
accelerometer time drift in a device-specific manner. Our synchro-
nization method holds promise for spatial research in public health.
For example, Zhao, Kwan, and Zhou (2018) recently advocated for
greater spatial precision in studies examining neighborhood effects
or other geographic influences upon physical activity.

Our analysis of synchronized GPS and accelerometer data
shows a strong relationship between daily distance walked and step
counts, resulting in a grand average step length of 0.69 meters
(Figure 4). However, step length varies across individuals and
contexts. Our multivariate model (M2, Table 2) shows that faster
walking speeds and taller subjects both generated longer step
lengths. Thus, measures of step length derived from our synchro-
nized GPS and accelerometer data conform to the expectations of
biomechanical models (Alexander, 1984; Weyand et al., 2010).
The relationship between walking speed and step length is quite
pronounced, as expected. The relationship between height and step
length is in the direction expected, but it is a very weak effect. Our
analyses also show that quite similar estimates of the relationship
between step length and walking speed arise when based either on
carefully controlled experimental observations, or synchronized
sensor data recording free-living subjects (Figure 5). While the best
fit linear relationship between these variables has a remarkably
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Figure 6 — The relationship between a) distance walked, b) mean speed, and c) subject height on total step counts per day, when conditioning on the

other variables being at their mean values. The grey areas represent the 95% credible intervals of the Bayesian model (M6) posterior predictions, and the

blue line represents the mean model prediction.

similar slope in both datasets, there is considerably more noise in
the sensor dataset, and the goodness of fit of the sensor-based
model is much lower.

Our multivariate model to estimate step counts using GPS data
and height (M5) has a very high goodness of fit (0.96) and a
moderate mean absolute percent error (16.8%). While this model
does not detect a statistically significant influence of subject height,
we recommend that subject height still be considered a likely
influence upon step counts, especially in samples that include both
adults and sub-adults.

One weakness of our study is that we do not examine the
accuracy of the step count measures produced by the acceler-
ometers in our field setting. Though all wearable accelerometers
generate some misclassification error, ActivPal devices have been
shown to produce accurate step count measures when subjects are
walking on treadmills and overground (Grant, Dall, Mitchell, &
Granat, 2008; Treacy et al., 2017). However one study has found
that their accuracy declines when research subjects simulate daily
life across a range of physical activities, and other devices on the
market might provide more accurate measures of step counts in
free-living subjects (Hickey, John, Sasaki, Mavilia, & Freedson,
2016). As a part of our larger research efforts, part of which focuses
on posture, we were motivated to use an accelerometer that could
measure leg position (horizontal or vertical), which is a unique
feature provided by the ActivPal.

Our study was carried out in a remote rural area, where people
spend most of their waking hours outdoors, and nearly all travel is
done on foot. Observation conditions would be much different in
an urban setting, where GPS signals are often impeded by struc-
tures, people work indoors, and where pedestrian travel is overall
less frequent. These limitations do not preclude our method being
applied in such contexts, but it is likely that additional data
processing and analyses procedures would be called for. We share
the source code of our software so that other researchers could
extend or modify our method as suited.

We can imagine our method being extended to permit more
accurate synchronization of audio or video data to GPS or accel-
erometers, where footfalls are likely to leave identifiable audio and
video cues. Once coded as step counts, such data could thereafter
be synchronized with GPS data or accelerometer data using the
methods we have outlined. In addition, this method may be used to

compare data collected from different accelerometers to determine
the accuracy of new devices or wear locations.

Our findings gives us confidence that synchronized GPS and
accelerometer data are reliable enough to characterize functional
relationships between anatomy and behavior that structure pedes-
trian travel. We also hope that our sensor synchronization method,
or extensions of it, will be of value to researchers investigating
spatial correlates of physical activity and health.
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